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The progress of the theory of shells takes place in the direction of de- 
velopment of approximate computational procedures adapted to the treat- 
ment of certain types of problems encountered in various technical 
applications. Particular attention is being paid in this development 
also to the question of representing the methods of analysis by means of 
sufficiently simple and clearly understandable steps, leaving to the de- 
signer the possibility of unobstructed orientation in making an appropri- 
ate choice among the available approximate ways of computation. With this 
circumstance in mind, one notices easily that the equations of the general 
theory of shells, taken in their usual form and containing the non- 
associated quantities T1, Tz, S, MI, M,, H, are not convenient for deri- 
vation of approximate theories. since the simplification of the equations 
mentioned, accomplished by omission of certain terms considered negli- 
gible in comparison with some other terms, is very often a speculative 
operation, understandable only to a narrow circle of specialists. The 
process of deriving approximate theories is considerably improved if in- 
stead of the stress resultants and couples we use more unified quantities, 
such as stresses acting in the extreme layers of the shell thickness. as 
fundamental unknown quantities of the problem. In the following we offer 
a particular version of presenting the general equations of the theory of 
shells in terms of the stresses just mentioned. It is shown that in this 
representation both the derivation of the fundamental equations and the 
statement of a number of known theoretical results are clearer and 
simpler. In the process of setting up the equations we use the generally 
accepted notations for the quantities appearing in the analysis and 
adopted also in [ 1 1 to [ 5 1. Small quantities will be treated in all 
equations with the accuracy to 1 + A + h2 = 1 + A. where h is the ratio 
of half-thickness of the shell to the radius of curvature of the latter. 
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1. Equations of statics. Assuming the axes of the coordinates 
a, /3, t to be directed along the lines of the principal curvatures and 
the outer normal to the middle surface, respectively,and using the law 
of linear distribution of the fundamental stresses across the shell 
thickness, we have 

where uL, a2 and o12 are the normal stresses and the shear stress, re- 
spectively, at a point of the middle surface, while ml, m2 and ml2 are 
the normal stresses and the shear stress, respectively, at the extreme 
points z. = It h, produced by bending and twist, respectively. The total 
stresses at these extreme points wifl be 

oaf = 51 + R, afi + = 52 -I- nr,, + 
&ii = 512 -+ fnl? (1.2) _ 

5, = 51 - 1??,1, 6$- = cia - rn2, Gp - -t_ 512 - VlpJ 

Substituting (1.1) into the expressions for the stress resultants and 
couples, we find 

I‘, z-. \ G, (1 + k,z) dz, 
c 

1711, = i zaa (1 -I- k,z) dz 

(1.53 
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$ ‘2 + $ a$ + M1;-Mz !$ + “IA+BH” ;- = N, 

f az _t_ ;+ _I !!&&!I5 c!? _t Hln+BH2 ag = :ql, 

S,-&+k,H,-kh-,H,=O 
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(1 .Q 

It is easily seen that the last (sixth) equation is fulfilled identi- 
cally. Turning to the other equations, we find that after elimination of 

the transverse forces only the stresses ai, mi will appear in them. In 
the interest of brevity we introduce the following symbols: 

For x = L,(@, O), y = L,(G), 0) we 

L, (x, y) = ;g + & g 

have 

(1.7) 

L1 (Y, - 4 = J% (x7 - ?A $8) 

where V2 represents the Laplace operator in curvilinear coordinates. 
Equations (1.5) assume the form 

L, (a,, 2%) f-k! (o12, Q1- 02) + A+wh%) + 

+ 2+ L2 h2, ml - m2) + fk = 0 
2h 

L2 (G, 2%~) -f- LI (GE, a2 - a,) + + L, (m2, 2m,,) -!- 

+ $4 (m12, m,--mm,)+@=0 
2h 

For the quantities %j n2 we obtain from (1.6) the expressions 

(1.10) 

(1.9) 

nl = Ll (ml9 W2) i-L2 h2, ml- m2) + h2Ll (h b2) + W2(Q12, ol- 02) 

n2 = L2(m2, 2w2) + -G(m12, n-m,) + W2(02, &2) + a2Ll(q2, a2- aI) 

The coefficients nl and n2 are in the nature of auxiliary quantities, 
and they disappear from consideration as soon as relations (1.6) are 
substituted into (1.5). It is easily seen in this operation that the 
terms with A, and A,, appearing on the right-hand sides of (1.101, will 
be superfluous; it is therefore possible to use for these quantities the 
formulas 

nl = J% (mr, 2mi2) -.I- L2 (m12, ml - m2) 

na = L2(m2, 2m12) +Ll(m12, m2-ml) 

(1.11) 
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Equations (1.9) and (1.11) will represent the first group of funda- 

mental equations of the theory of shells. 

2. Geometric equations. The strain components and the displace- 
ment components at an arbitrary point are connected with each other by 

relations which can be written as follows: 

Using the hypothetic relations of Kirchhoff-Love, namely e 

ePz = 0, we find from the last three equations of the system 
fi*;;euz = 

u, = u Jr Zfl, u = v + zfg, u,=w (2.21 

where u, v, tu are the displacement components of a point of the middle 

surface, while 

Substituting (2.2) into the first three equations of the system (2.11, 

we write them in the form 

e - El + ZXlZ CL0 - epj3 = 8, + m, cap I- 0 -t 2zt (2.4) 

where 
%=b(U, u) + hw, Xl== h(ll> fi?) - k&l 

sz = J%(v, u) + ksw, xz = L,(fz, fl) --k, ~2 
(2.5) 

o=L2(u- 3) +Llfv, -zz> 

2~ = fi(f2, -Id +L(f,, -f2) - x-,L,(v, - ~)---2L2(% - ~1 

represent the deformation components of the middle surface. Mations 

(2.5) are the second group of the fundamental equations of the shell 

theory. We note that the expressions for cl, e2 and o are independent of 

the Kirchhoff-Love hypotheses; they follow immediately from (2.1) and 

are exact. 

The third group of fundamental equations will be furnished by the re- 

lations of compatibility of the deformation components of the middle 
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surface as given by Gol'denveizer. If, instead of the reduced components 

of bending and twisting deformation used by Gol'denveizer, we use the 

actual components (2.51, the compatibility equations assume the form 

Ll (x2, - 2z)- L,(t, Xl - x2) - (~1t~z)Llt% --)+2k,L,(~o,&,-&*)=O 

Ls(q,- 22)- L,(z,x,- xl)-@, + k,)L,(q, - 0) + 2&L, (+ w, EC-I) =O 

LI(TI, rz) + Wra 71) +&ax, + klxz = 0 Pm 
where (2.7) 

71 = L1 (%, - 0) -LL,($o, El- EZ), rz = L2(&1, - 0) +(+I, E2 - El) 

Equations (2.6) differ from the corresponding equations of Gol'den- 

veizer by appearance, in the first two equations, of some supplementary 

terms containing the curvatures k, and k,. ‘lie third equation remains un- 

than ed, 
f 

since the correction involved would be of the order of magnitude 

of X in comparison with unity. 

3. Equations of elasticity. Disregarding the component oZ as 

negligible in comparison with the fundamental stress components a, and up, 

we obtain from Hooke's laws 

Substituting (1.1) into (3.1) and representing the deformations in 

the form (2.4), we obtain the elasticity relations of the shell theory 

in the following simplest form: 

a,=*( 
1-P El -i- ‘I%), Q2 = &A + PEI), 

Eh 

412 = q&j w (3 2) 

ml - ---T(~l+ px2), 
Eh ’ 

l----P 
ml2 = mr 

Formulas (3.2) repesent the fourth group of the fundamental equations 

of the general theory of shells. 

Equations (1.9), (2.5), (2.61, (3.2) give us a complete system of 

fundamental equations of the general theory of shells; for certain bound- 

ary conditions along the boundary line of a shell, the system just indi- 

cated permits actual problems to be solved. 

4. Ihe use of auxiliary functions. Lur'e and Gol'denveizer 

have shown that if the shell is subjected to loads along the boundary 

only, i.e. if ql = q2 = q3 = 0, then the equilibrium equations can be 
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satisfied by expressing all stress resultants and couples in terms of 

four auxiliary functions. Analogous considerations, which reduce to 

juxtaposition of Equations (1.9) and (2.6) show in the present study that 

it is superfluous to introduce a fourth function; the relations of the 

authors mentioned can be represented by means of three functions in the 

following manner: 

6, = AK:! (a> b, c), 6, = Izx, (n, b, c), s12 = - Ia (0, IJ, (:) 
(4.1) 

V?; 7= - 3G((r, 0, c), m, = -39,(n, b, c). ml2 = + w (a, II, c) 

l-h e quantities a, b, c are here auxiliary functions of the coordinates 
a and p, to be substituted into (2.5) to (2.3) for u, v, w. All stress 

resultants and couples can be determined from (4.1) on the basis of (1.4). 

5. Compatibility equations in terms of stresses. Substituting 
the deformation components from (3.2) into (2.6), we obtain the compati- 

bility equations for the components of deformation in terms of those of 

stress 

L (%, 2m,,) -I- L, (m12, m, - m,) - Gp L, (ml $ mB, 0) -'- * >( 

S &(6, + c,,O)-(h, + &)&($, h,,)- 2h,L,(o,,, q- z2)= 0 (3.1) 

L, (rnp, 2m1,) -I- JL (m12, mz - ml) - 

;- *L, (Q1 + c,, 0) - (A 1 i h,)L2(~2, 2512) - 2h2Ll(%2, 5, - 6,) = 0 
/ 

Ll(Pl, P2) + L2(P2, PI) - g;(ly;, - 
I~I- pm2 

R&(1 + p) 
=o 

In the last of these equations 

Pl = Ll(%, 2012) + L2 ($2, $- 62) - 

P2 = L2(% 2$2) + JL(%,, 52 - 01) - +pL2 (a1 + 029 0) 

Equations (1.9) and (5.1) are a system of six equations for six un- 

knowns; they represent the basic equations for the solution of problems 

in terms of stresses. 

6* Complex equations of V.V. NovozbiLov for the case p = 0. 
If p = 0, we substitute 

t, = ~5~ -- + m,, t, = 62 - *ml, h = al2 + j&ml2 (6.1) 

into the equations of equilibrium (1.9) and the equations of compatibil- 

ity (5.11, which transforms the double system into an equivalent system 
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of three complex equations in term of the complex stresses tl, tt, t12, 
namely 

(6.2) 
=b CL 2k!) + (1 - i $L, (t,,, t, - ts) -t i * L1 (t,; -2t4 + -g = 0 

L2 (h, 24,) + (1 - i 3, Ll (t,,, t,- t1) -t ik* L, (tl, - 2t1,) + 5 = 0 

+% 1-b (7.1, r2) + L2 (rZ, rdl - &- - 1 -&+2&=o 

where 
(6.3) 

r1 = -& (ta, - 2&J - La &a, tl - t2), rz = La (L - 2&a) - -& @ET, t, - tJ 

If ,u f 0, a system of substitutions, analogous to (6.1) which reduces 
Equations (1.9) and (5.1) to a system of three complex equations, cannot 
be obtained. Such a possibility could be created only by simplifying 
these equations at the cost of omitting some small terms of the order of 
magnitude of A, leaving in them at the same time some small terms of the 
same order of magnitude; this would be, however, an inconsistent pro- 
cedure. 

7. Fundamental equations of the theory of plates. Substitut- 
ing R, = 00, R, = (D into (1.9) and (5.11, and taking into account (1.12) 
and (5.21, we obtain the fundamental equations of the theory of plates 
in curvilinear coordinates: 

L, (61, 2%) + La (ora, %- G2) + g = 0 

L2 (429 2%2) + Ll(%2? 02 - 4 + g = 0 

v2(a1 + 02) + q IL1 (41, Q2) + L2 (42, ch)l = 0 

v2h+m2)+ 3(;jyq,=o 

Llh, 2m12) + L2 h2, ml - m2> - &Lh+ m2,Q = 0 

L2@2, 2m12) + Ll (m12, m2 - 4 - &L2h+ mZp 0) = 0 

(7.1) 

(7.2) 

(7.3) 

(7.4) 

Equations (7.1) and (7.2) describe the plane state of stress in a 
plate; they represent two equations of equilibrium and one equation of 
compatibility of deformation components; Equations (7.3) and (7.4) de- 
scribe bending of the plate; they consist of one equation of equilibrium 
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and two equations of compatibility. 

In the case q1 = q2 = 0 we introduce an Airy stress function @(a, 8); 
with the notations 

rp, = L1 P, O), cp,=J52(@7 0) (7.5) 

the solution of Equations (7.1) can be taken in the form 

(7.6) 
51 = L2 (rpz, cpl), 32 = L, (rpl, cpz>, 612 = ---ltcp,? -CPJ = --L,(cp,, --2) 

while Equation (7.2) is reduced in this procedure to the biharmonic equa- 
tion of the plane problem 

vZv”cD = 0 (7.7) 

Analogously, introducing another function ‘4 and using the notations 

%l = L1 (Yt O), $2 = L2V, 01 (7.8) 

we can satisfy Equations (7.4) by setting 

1111 = LI(SI, $8) + I& (921 VI), m2 = La W2, 91) + @I ($1, $2) (7.9) 

7%2 = (I- P)JLN2,-W = (1-P) L2(%, -92) 

while (7.3) assumes the form 

Combining (7.9) with the elasticity relations 
(2.3) for the bending and twisting deformations, 

Y=-+# 

‘Iherefore, instead of (‘7.10) we will have 
Germain 

The left-hand sides of Equations (7.1) to (7.4) are the principal 

the 

(7.10) 

(3.2) and Expressions 
we find that 

(7.11) 

equation of Sophie 

(7.12) 

terms in Equations (1.9) and (5.1) of the general theory of shells. This, 
as well as the further transfo~ation of these equations in accordance 
with (7.5) to (7.12), is taken into consideration in the derivation of 
approximate theories of analysis of shells. 
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8, Approximations of the theory for the case of shallow 
shells. Let us consider the state of stress of a shell under the assump- 

tion that the stresses due to extension and those due to bendiug are of 

the same order of magnitude, so that ui p: mi. In this case, we obtain, 

by omitting in all equations (1.9) and (5.1) small quantities of the 

order of magnitude of X as compared with unity, the following approximate 
equations: 

3(1 +pj 61 
v2h+m2)-~ (-il;i--g)+3'~~p)q3=o (8.2) 

Ll (ml, 2m12) 4 L2 @12, ml - m2) - && (ml + m2,O) = 0 
P-3) 

L&2, 2mBf -l4@12, w--m+ &L,(ml+m2,01=0 

v2 (a, + 02) + m= ;Jrn2 + ma Tllrnl + 2h I + Ic. 1-h (Ql, Qa) + La k72, ad1 = 0 (8.4) 

It is not difficult to see that (8.1) to (8.4) correspond to the equa- 

tions adopted by Vlasov in the theory of shallow shells. We know that 

these equations have been obtained by Vlasov on the basis of some geo- 

metric and static assumptions. ‘Ihe present discussion shows that the 

theory developed by Vlasov is a ~thematically consistent theory accurate 

tol+X= 1 in such cases, when the stresses due to extension and to 

bending are of the same order of magnitude. The passage from the equations 

(8.1) to (8.4) to those of Vlasov is materialized by formal utilization 

of the results of the preceding section for the case under consideration. 

We find that Equations (8.1) and (8.3) coincide as regards their struc- 

ture with Equations (7.1) and (7.4); this does not mean, however, that 

they are identical. The fact is that in the case of g1 = 0, qz = 0 sub- 

stitution of (7.6) and (7.9) satisfies Equations (7.1) and (7.4); the 

former are thus the integrals of the latter. Ibis does not apply to Equa- 

tions (8.1) and (8.3), since the substitution of (7.6) and (7.9) produces, 

on the basis of Gauss’ condition, on the right-hand sides of (8.1) and 

(8.3) small quantities differing from zero; e.g. for (8.1) we find 

(8.5) 

L,(% 2$2) + L&I,, %--- 3) = - &+2P, 0) 

The right-hand sides of (8.5) ( as well as the equations obtained from 
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(8.3)) are small in comparison with the terms which cancel each other on 

the left-hand side; therefore (7.6) and (7.9) may be regarded with a 

sufficient degree of accuracy to be the integrals also of Equations (8.1) 

and (8.3). 

Substituting (7.6) and (7.9) into Equations (8.2) and (8.41, we obtain 

These equations coincide with those of Vlasov if the function V is 

replaced there by the deflection w according to Formula (7.11). This re- 

placement is equivalent to omitting, in Expressions (2.5) for the com- 

ponents of bending and twisting deformation, the tangential displacements 

u, v, while retaining the radial displacement w, which is in agreement 

with the adopted degree of accuracy. 

BIBLIOGRAPHY 

1. Lur’ e. A. I., Statika tonkostennykh uprugikh obolochek (Statics of 

Thin Elastic Shells). Gostekhizdat. 1947. 

2. Timoshenko. S. P., Plastinki i obolochki (Plates and Shells). Gostekh- 
izdat, 1948. 

3. Vl asov, V. Z. , Obshchaia teoriia obolochek i ee prineneniia v tekhnike 

(General Theory of Shells and Its Applications in Engineering). 

Gostekhizdat. 1949. 

4. Novozhilov. V. V., Teoriia ton&i&h obolochek (Theory of Thin Shells). 

Sudpromgiz, 1951. 

5. Gal’ denveizer. A.L., Teoriia uprugikh ton&i&h obolochek (Theory of 

Elastic Thin Shells). Gostekhizdat. 1953. (English translation 
published by Pergamon Press. 1961). 

Translated by I.M. 


